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Abstract

We describe QUEST, an open source
framework for machine translation quality
estimation. The framework allows the ex-
traction of several quality indicators from
source segments, their translations, exter-
nal resources (corpora, language models,
topic models, etc.), as well as language
tools (parsers, part-of-speech tags, etc.). It
also provides machine learning algorithms
to build quality estimation models. We
benchmark the framework on a number of
datasets and discuss the efficacy of fea-
tures and algorithms.

1 Introduction

As Machine Translation (MT) systems become
widely adopted both for gisting purposes and to
produce professional quality translations, auto-
matic methods are needed for predicting the qual-
ity of a translated segment. This is referred to as
Quality Estimation (QE). Different from standard
MT evaluation metrics, QE metrics do not have
access to reference (human) translations; they are
aimed at MT systems in use. QE has a number of
applications, including:

• Deciding which segments need revision by a
translator (quality assurance);

• Deciding whether a reader gets a reliable gist
of the text;

• Estimating how much effort it will be needed
to post-edit a segment;

• Selecting among alternative translations pro-
duced by different MT systems;

• Deciding whether the translation can be used
for self-training of MT systems.

Work in QE for MT started in the early 2000’s,
inspired by the confidence scores used in Speech
Recognition: mostly the estimation of word pos-
terior probabilities. Back then it was called confi-

dence estimation, which we believe is a narrower
term. A 6-week workshop on the topic at John
Hopkins University in 2003 (Blatz et al., 2004)
had as goal to estimate automatic metrics such as
BLEU (Papineni et al., 2002) and WER. These
metrics are difficult to interpret, particularly at the
sentence-level, and results of their very many trials
proved unsuccessful. The overall quality of MT
was considerably lower at the time, and therefore
pinpointing the very few good quality segments
was a hard problem. No software nor datasets
were made available after the workshop.

A new surge of interest in the field started re-
cently, motivated by the widespread used of MT
systems in the translation industry, as a conse-
quence of better translation quality, more user-
friendly tools, and higher demand for translation.
In order to make MT maximally useful in this
scenario, a quantification of the quality of trans-
lated segments similar to “fuzzy match scores”
from translation memory systems is needed. QE
work addresses this problem by using more com-
plex metrics that go beyond matching the source
segment with previously translated data. QE can
also be useful for end-users reading translations
for gisting, particularly those who cannot read the
source language.

QE nowadays focuses on estimating more inter-
pretable metrics. “Quality” is defined according to
the application: post-editing, gisting, etc. A num-
ber of positive results have been reported. Exam-
ples include improving post-editing efficiency by
filtering out low quality segments which would re-
quire more effort or time to correct than translating
from scratch (Specia et al., 2009; Specia, 2011),
selecting high quality segments to be published as
they are, without post-editing (Soricut and Echi-
habi, 2010), selecting a translation from either
an MT system or a translation memory for post-
editing (He et al., 2010), selecting the best trans-
lation from multiple MT systems (Specia et al.,



2010), and highlighting sub-segments that need re-
vision (Bach et al., 2011).

QE is generally addressed as a supervised ma-
chine learning task using a variety of algorithms to
induce models from examples of translations de-
scribed through a number of features and anno-
tated for quality. For an overview of various al-
gorithms and features we refer the reader to the
WMT12 shared task on QE (Callison-Burch et
al., 2012). Most of the research work lies on
deciding which aspects of quality are more rel-
evant for a given task and designing feature ex-
tractors for them. While simple features such as
counts of tokens and language model scores can be
easily extracted, feature engineering for more ad-
vanced and useful information can be quite labour-
intensive. Different language pairs or optimisation
against specific quality scores (e.g., post-editing
time vs translation adequacy) can benefit from
very different feature sets.

QUEST, our framework for quality estimation,
provides a wide range of feature extractors from
source and translation texts and external resources
and tools (Section 2). These go from simple,
language-independent features, to advanced, lin-
guistically motivated features. They include fea-
tures that rely on information from the MT sys-
tem that generated the translations, and features
that are oblivious to the way translations were
produced (Section 2.1). In addition, by inte-
grating a well-known machine learning toolkit,
scikit-learn,1 and algorithms that are known
to perform well on this task, QUEST provides a
simple and effective way of experimenting with
techniques for feature selection and model build-
ing, as well as parameter optimisation through grid
search (Section 2.2). In Section 3 we present
experiments using the framework with nine QE
datasets.

In addition to providing a practical platform
for quality estimation, by freeing researchers from
feature engineering, QUEST will facilitate work
on the learning aspect of the problem. Quality
estimation poses several machine learning chal-
lenges, such as the fact that it can exploit a large,
diverse, but often noisy set of information sources,
with a relatively small number of annotated data
points, and it relies on human annotations that are
often inconsistent due to the subjectivity of the
task (quality judgements). Moreover, QE is highly

1
http://scikit-learn.org/

non-linear: unlike many other problems in lan-
guage processing, considerable improvements can
be achieved using non-linear kernel techniques.
Also, different applications for the quality predic-
tions may benefit from different machine learn-
ing techniques, an aspect that has been mostly ne-
glected so far. Finally, the framework will also
facilitate research on ways of using quality predic-
tions in novel extrinsic tasks, such as self-training
of statistical machine translation systems, and for
estimating quality in other text output applications
such as text summarisation.

2 The QUEST framework

QUEST consists of two main modules: a feature
extraction module and a machine learning mod-
ule. The first module provides a number of feature
extractors, including the most commonly used fea-
tures in the literature and by systems submitted to
the WMT12 shared task on QE (Callison-Burch et
al., 2012). More than 15 researchers from 10 in-
stitutions contributed to it as part of the QUEST
project.2 It is implemented in Java and provides
abstract classes for features, resources and pre-
processing steps so that extractors for new features
can be easily added.

The basic functioning of the feature extraction
module requires raw text files with the source and
translation texts, and a few resources (where avail-
able) such as the source MT training corpus and
language models of source and target. Configura-
tion files are used to indicate the resources avail-
able and a list of features that should be extracted.

The machine learning module provides
scripts connecting the feature files with the
scikit-learn toolkit. It also uses GPy, a
Python toolkit for Gaussian Processes regression,
which outperformed algorithms commonly used
for the task such as SVM regressors.

2.1 Feature sets

In Figure 1 we show the types of features that
can be extracted in QUEST. Although the text
unit for which features are extracted can be of any
length, most features are more suitable for sen-
tences. Therefore, a “segment” here denotes a sen-
tence.

From the source segments QUEST can extract
features that attempt to quantify the complexity

2
http://www.dcs.shef.ac.uk/
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Figure 1: Families of features in QUEST.

of translating those segments, or how unexpected
they are given what is known to the MT system.
Examples of features include:

• number of tokens in the source segment;
• language model (LM) probability of source

segment using the source side of the parallel
corpus used to train the MT system as LM;

• percentage of source 1–3-grams observed in
different frequency quartiles of the source
side of the MT training corpus;

• average number of translations per source
word in the segment as given by IBM 1
model with probabilities thresholded in dif-
ferent ways.

From the translated segments QUEST can ex-
tract features that attempt to measure the fluency

of such translations. Examples of features include:
• number of tokens in the target segment;
• average number of occurrences of the target

word within the target segment;
• LM probability of target segment using a

large corpus of the target language to build
the LM.

From the comparison between the source and
target segments, QUEST can extract adequacy

features, which attempt to measure whether the
structure and meaning of the source are pre-
served in the translation. Some of these are based
on word-alignment information as provided by
GIZA++. Features include:

• ratio of number of tokens in source and target
segments;

• ratio of brackets and punctuation symbols in
source and target segments;

• ratio of percentages of numbers, content- /
non-content words in the source & target seg-
ments;

• ratio of percentage of nouns/verbs/etc in the

source and target segments;
• proportion of dependency relations between

(aligned) constituents in source and target
segments;

• difference between the depth of the syntactic
trees of the source and target segments;

• difference between the number of
PP/NP/VP/ADJP/ADVP/CONJP phrases in
the source and target;

• difference between the number of per-
son/location/organization entities in source
and target sentences;

• proportion of person/location/organization
entities in source aligned to the same type of
entities in target segment;

• percentage of direct object personal or pos-
sessive pronouns incorrectly translated.

When available, information from the MT sys-
tem used to produce the translations can be very
useful, particularly for statistical machine transla-
tion (SMT). These features can provide an indi-
cation of the confidence of the MT system in the
translations. They are called “glass-box” features,
to distinguish them from MT system-independent,
“black-box” features. To extract these features,
QUEST assumes the output of Moses-like SMT
systems, taking into account word- and phrase-
alignment information, a dump of the decoder’s
standard output (search graph information), global
model score and feature values, n-best lists, etc.
For other SMT systems, it can also take an XML
file with relevant information. Examples of glass-
box features include:

• features and global score of the SMT system;
• number of distinct hypotheses in the n-best

list;
• 1–3-gram LM probabilities using translations

in the n-best to train the LM;
• average size of the target phrases;
• proportion of pruned search graph nodes;
• proportion of recombined graph nodes.
We note that some of these features are

language-independent by definition (such as the
confidence features), while others can be depen-
dent on linguistic resources (such as POS taggers),
or very language-specific, such as the incorrect
translation of pronouns, which was designed for
Arabic-English QE.

Some word-level features have also been im-
plemented: they include standard word posterior
probabilities and n-gram probabilities for each tar-



get word. These can also be averaged across the
whole sentence to provide sentence-level value.

The complete list of features available is given
as part of QUEST’s documentation. At the current
stage, the number of BB features varies from 80
to 123 depending on the language pair, while GB
features go from 39 to 48 depending on the SMT
system used (see Section 3).

2.2 Machine learning

QUEST provides a command-line interface mod-
ule for the scikit-learn library implemented
in Python. This module is completely indepen-
dent from the feature extraction code and it uses
the extracted feature sets to build QE models.
The dependencies are the scikit-learn li-
brary and all its dependencies (such as NumPy3

and SciPy4). The module can be configured to
run different regression and classification algo-
rithms, feature selection methods and grid search
for hyper-parameter optimisation.

The pipeline with feature selection and hyper-
parameter optimisation can be set using a con-
figuration file. Currently, the module has an
interface for Support Vector Regression (SVR),
Support Vector Classification, and Lasso learn-
ing algorithms. They can be used in conjunction
with the feature selection algorithms (Randomised
Lasso and Randomised decision trees) and the grid
search implementation of scikit-learn to fit
an optimal model of a given dataset.

Additionally, QUEST includes Gaussian Pro-
cess (GP) regression (Rasmussen and Williams,
2006) using the GPy toolkit.5 GPs are an ad-
vanced machine learning framework incorporating
Bayesian non-parametrics and kernel machines,
and are widely regarded as state of the art for
regression. Empirically we found the perfor-
mance to be similar to SVR on most datasets,
with slightly worse MAE and better RMSE.6 In
contrast to SVR, inference in GP regression can
be expressed analytically and the model hyper-
parameters optimised directly using gradient as-
cent, thus avoiding the need for costly grid search.
This also makes the method very suitable for fea-
ture selection.

3
http://www.numpy.org/

4
http://www.scipy.org/

5
https://github.com/SheffieldML/GPy

6This follows from the optimisation objective: GPs use a
quadratic loss (the log-likelihood of a Gaussian) compared to
SVR which penalises absolute margin violations.

Data Training Test
WMT12 (en-es) 1,832 422
EAMT11 (en-es) 900 64
EAMT11 (fr-en) 2,300 225
EAMT09-s1-s4 (en-es) 3,095 906
GALE11-s1-s2 (ar-en) 2,198 387

Table 1: Number of sentences used for training
and testing in our datasets.

3 Benchmarking

In this section we benchmark QUEST on nine ex-
isting datasets using feature selection and learning
algorithms known to perform well in the task.

3.1 Datasets

The statistics of the datasets used in the experi-
ments are shown in Table 1.7

WMT12 English-Spanish sentence translations
produced by an SMT system and judged for
post-editing effort in 1-5 (worst-best), taking a
weighted average of three annotators.

EAMT11 English-Spanish (EAMT11-en-es)
and French-English (EAMT11-fr-en) sentence
translations judged for post-editing effort in 1-4.

EAMT09 English sentences translated by four
SMT systems into Spanish and scored for post-
editing effort in 1-4. Systems are denoted by s1-s4.

GALE11 Arabic sentences translated by two
SMT systems into English and scored for ade-
quacy in 1-4. Systems are denoted by s1-s2.

3.2 Settings

Amongst the various learning algorithms available
in QUEST, to make our results comparable we se-
lected SVR with radial basis function (RBF) ker-
nel, which has been shown to perform very well
in this task (Callison-Burch et al., 2012). The op-
timisation of parameters is done with grid search
using the following ranges of values:

• penalty parameter C: [1, 10, 10]
• �: [0.0001, 0.1, 10]
• ✏: [0.1, 0.2, 10]

where elements in list denote beginning, end and
number of samples to generate, respectively.

For feature selection, we have experimented
with two techniques: Randomised Lasso and

7The datasets can be downloaded from http://www.

dcs.shef.ac.uk/
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Gaussian Processes. Randomised Lasso (Mein-
shausen and Bühlmann, 2010) repeatedly resam-
ples the training data and fits a Lasso regression
model on each sample. A feature is said to be se-
lected if it was selected (i.e., assigned a non-zero
weight) in at least 25% of the samples (we do this
1000 times). This strategy improves the robust-
ness of Lasso in the presence of high dimensional
and correlated inputs.

Feature selection with Gaussian Processes is
done by fitting per-feature RBF widths (also
known as the automatic relevance determination

kernel). The RBF width denotes the importance
of a feature, the narrower the RBF the more impor-
tant a change in the feature value is to the model
prediction. To make the results comparable with
our baseline systems we select the 17 top ranked
features and then train a SVR on these features.8

As feature sets, we select all features available
in QUEST for each of our datasets. We differen-
tiate between black-box (BB) and glass-box (GB)
features, as only BB are available for all datasets
(we did not have access to the MT systems that
produced the other datasets). For the WMT12 and
GALE11 datasets, we experimented with both BB
and GB features. For each dataset we build four
systems:

• BL: 17 baseline features that performed well
across languages in previous work and were
used as baseline in the WMT12 QE task.

• AF: All features available for dataset.
• FS: Feature selection for automatic ranking

and selection of top features with:
– RL: Randomised Lasso.
– GP: Gaussian Process.

Mean Absolute Error (MAE) and Root Mean
Squared Error (RMSE) are used to evaluate the
models.

3.3 Results

The error scores for all datasets with BB features
are reported in Table 2, while Table 3 shows the re-
sults with GB features, and Table 4 the results with
BB and GB features together. For each table and
dataset, bold-faced figures are significantly better
than all others (paired t-test with p  0.05).

It can be seen from the results that adding more
BB features (systems AF) improves the results in
most cases as compared to the baseline systems

8More features resulted in further performance gains on
most tasks, with 25–35 features giving the best results.

Dataset System #feats. MAE RMSE

WMT12

BL 17 0.6802 0.8192
AF 80 0.6703 0.8373

FS(RL) 69 0.6628 0.8107

FS(GP) 17 0.6537 0.8014

EAMT11(en-es)

BL 17 0.4867 0.6288
AF 80 0.4696 0.5438

FS(RL) 29 0.4657 0.5424
FS(GP) 17 0.4640 0.5420

EAMT11(fr-en)

BL 17 0.4387 0.6357
AF 80 0.4275 0.6211

FS(RL) 65 0.4266 0.6196
FS(GP) 17 0.4240 0.6189

EAMT09-s1

BL 17 0.5294 0.6643
AF 80 0.5235 0.6558

FS(RL) 73 0.5190 0.6516
FS(GP) 17 0.5195 0.6511

EAMT09-s2

BL 17 0.4604 0.5856
AF 80 0.4734 0.5973

FS(RL) 59 0.4601 0.5837
FS(GP) 17 0.4610 0.5825

EAMT09-s3

BL 17 0.5321 0.6643
AF 80 0.5437 0.6827

FS(RL) 67 0.5338 0.6627
FS(GP) 17 0.5320 0.6630

EAMT09-s4

BL 17 0.3583 0.4953
AF 80 0.3569 0.5000

FS(RL) 40 0.3554 0.4995
FS(GP) 17 0.3560 0.4949

GALE11-s1

BL 17 0.5456 0.6905
AF 123 0.5359 0.6665

FS(RL) 56 0.5358 0.6649

FS(GP) 17 0.5410 0.6721

GALE11-s2

BL 17 0.5532 0.7177
AF 123 0.5381 0.6933

FS(RL) 54 0.5369 0.6955

FS(GP) 17 0.5424 0.6999

Table 2: Results with BB features.

Dataset System #feats. MAE RMSE

WMT12 AF 47 0.7036 0.8476
FS(RL) 26 0.6821 0.8388

FS(GP) 17 0.6771 0.8308

GALE11-s1
AF 39 0.5720 0.7392

FS(RL) 46 0.5691 0.7388

FS(GP) 17 0.5711 0.7378

GALE11-s2
AF 48 0.5510 0.6977

FS(RL) 46 0.5512 0.6970
FS(GP) 17 0.5501 0.6978

Table 3: Results with GB features.

Dataset System #feats. MAE RMSE

WMT12 AF 127 0.7165 0.8476
FS(RL) 26 0.6601 0.8098

FS(GP) 17 0.6501 0.7989

GALE11-s1
AF 162 0.5437 0.6741

FS(RL) 69 0.5310 0.6681

FS(GP) 17 0.5370 0.6701

GALE11-s2
AF 171 0.5222 0.6499

FS(RL) 82 0.5152 0.6421

FS(GP) 17 0.5121 0.6384

Table 4: Results with BB and GB features.



BL, however, in some cases the improvements are
not significant. This behaviour is to be expected
as adding more features may bring more relevant
information, but at the same time it makes the rep-
resentation more sparse and the learning prone to
overfitting. In most cases, feature selection with
both or either RL and GP improves over all fea-
tures (AF). It should be noted that RL automati-
cally selects the number of features used for train-
ing while FS(GP) was limited to selecting the top
17 features in order to make the results compara-
ble with our baseline feature set. It is interesting
to note that system FS(GP) outperformed the other
systems in spite of using fewer features. This tech-
nique is promising as it reduces the time require-
ments and overall computational complexity for
training the model, while achieving similar results
compared to systems with many more features.

Another interesting question is whether these
feature selection techniques identify a common
subset of features from the various datasets. The
overall top ranked features are:

• LM perplexities and log probabilities for
source and target;

• size of source and target sentences;
• average number of possible translations of

source words (IBM 1 with thresholds);
• ratio of target by source lengths in words;
• percentage of numbers in the target sentence;
• percentage of distinct unigrams seen in the

MT source training corpus.
Interestingly, not all top ranked features are

among the baseline 17 features which are report-
edly best in literature.

GB features on their own perform worse than
BB features, but in all three datasets, the combi-
nation of GB and BB followed by feature selec-
tion resulted in significantly lower errors than us-
ing only BB features with feature selection, show-
ing that the two features sets are complementary.

4 Remarks

The source code for the framework, the datasets
and extra resources can be downloaded from
http://www.quest.dcs.shef.ac.uk/.
The project is also set to receive contribution from
interested researchers using a GitHub repository:
https://github.com/lspecia/quest.

The license for the Java code, Python and shell
scripts is BSD, a permissive license with no re-
strictions on the use or extensions of the software

for any purposes, including commercial. For pre-
existing code and resources, e.g., scikit-learn, GPy

and Berkeley parser, their licenses apply, but fea-
tures relying on these resources can be easily dis-
carded if necessary.
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