
Noname manuscript No.
(will be inserted by the editor)

A Bayesian non-Linear Method for Feature Selection
in Machine Translation Quality Estimation

Kashif Shah · Trevor Cohn · Lucia
Specia

Received: date / Accepted: date

Abstract We perform a systematic analysis on the effectiveness of features for
the problem of predicting the quality of machine translation at the sentence-
level. Starting from a comprehensive feature set, we apply a technique based on
Gaussian Processes, a Bayesian non-linear learning method, to automatically
identify features leading to accurate model performance. We consider appli-
cation to several datasets across different language pairs and text domains,
with translations produced by various machine translation systems and scored
for quality according to different evaluation criteria. We show that selecting
features with this technique leads to significantly better performance in most
datasets, as compared to using the complete feature sets or a state-of-the-
art feature selection approach. In addition, we identify a small set of features
which seem to perform well across most datasets.

1 Introduction

Machine Translation (MT) systems have been increasingly adopted in recent
years for different purposes, including gisting and aiding humans to produce
professional quality translations. Since the quality of automatic translations
tends to vary significantly across text segments, methods to predict translation
quality become more and more relevant. This problem is referred to as Quality
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Estimation (QE). Different from standard MT evaluation metrics, QE metrics
do not have access to reference (human) translations; they are aimed at MT
systems in use. Applications of QE include:
– Decide which segments need revision by a human translator;
– Decide whether a reader gets a reliable gist of the text;
– Estimate how much effort will be needed to post-edit a segment;
– Select among alternative translations produced by different MT systems.

Work in QE started with the goal of estimating automatic metrics such
as BLEU [14] and WER [3]. However, these metrics are difficult to interpret,
particularly at the sentence-level, added to which automatic estimation proved
highly inaccurate. A new surge of interest in the field started recently, moti-
vated by the widespread use of MT systems in the translation industry, as a
consequence of better translation quality, more user-friendly tools, and higher
demand for translation. In order to make MT maximally useful in this scenario,
a quantification of the quality of translated segments similar to “fuzzy match
scores” from translation memory systems is needed.1 QE work addresses this
problem by using more complex metrics that go beyond matching the source
segment against previously translated data. QE can also be useful for end-
users reading translations for gisting, particularly those who cannot read the
source language. Recent work focuses on estimating more interpretable met-
rics, where “quality” is defined according to the task at hand: post-editing,
gisting, etc. A number of positive results have been reported (Section 2).

QE is generally addressed as a supervised machine learning task using
algorithms to induce models from examples of translations described through a
number of features and annotated for quality. One of most challenging aspects
of the task is the design of feature extractors to capture relevant aspects of
quality.

A wide range of features from source and translation texts and external re-
sources and tools have been used. These go from simple, language-independent
features, to advanced, linguistically motivated features. They include features
that rely on information from the MT system that generated the translations,
and features that are oblivious to the way translations were produced. This va-
riety of features plays a key role in QE, but it also introduces a few challenges.
Datasets for QE are usually small because of the cost of human annotation.
Therefore, large feature sets bring sparsity issues. In addition, some of these
features are more costly to extract as they depend on external resources or
require time-consuming computations. Finally, it is generally believed that dif-
ferent datasets (i.e. language pair, MT system or specific quality annotation
such as post-editing time vs translation adequacy) can benefit from different
features.

Feature selection techniques can help not only select the best features
for a given dataset, but also understand which features are in general effective.

1 A fuzzy match score represents the percentage of common words between a segment to
translate and segments previously translated in a database, and thus for which a correct
translation is available and can be used directly.
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While recent work has exploited selection techniques to some extent, the focus
has been on improving QE performance on individual datasets (Section 2). As
a result, no general conclusions can be made about the effectiveness of features
across language pairs, text domains, MT systems and quality labels.

In this paper we propose to use Gaussian Processes for feature selection,
a technique that has proven effective in ranking features according to their
discriminative power [27]. We benchmark with this technique on two settings:
(i) 13 datasets for four language pairs, various Statistical MT (SMT) and rule-
based MT (RBMT) systems and four types of quality scores with the same
feature sets; (i) one dataset (same language pair and quality scores) with seven
feature sets produced in a completely independent fashion (by participants in
a shared task on the topic) (Section 4). The experiments showed the potential
of feature selection to improve overall regression results, often outperforming
published results even on feature sets that had already been previously selected
using other methods. They also allowed us to identify a small number of well-
performing features across datasets (Section 5). We discuss the feasibility of
extracting these features based on their dependence on external resources or
specific languages.

2 Related work

Examples of successful cases of QE include improving post-editing efficiency
by filtering out low quality segments which would require more effort or time to
correct than translating from scratch [28,24], selecting high quality segments to
be published as they are, without post-editing [23], selecting a translation from
either an MT system or a translation memory for post-editing [10], selecting
the best translation from multiple MT systems [26], and highlighting sub-
segments that need revision [2]. For an overview of various algorithms and
features we refer the reader to the WMT12-13 shared tasks on QE [6,4].

Most previous work on QE use machine learning algorithms such as Sup-
port Vector Machines (SVM), which are fairly robust to redundant/noisy fea-
tures, and therefore feature selection is often neglected. Work using explicit fea-
ture selection methods rely mostly on forward/backward selection approaches,
but the order in which features are added/removed is not informed by any prior
knowledge. In what follows we summarise recent work using explicit feature
selection methods.

[8] performed feature selection on a set of 475 sentence- and sub-sentence
level features. Principal Component Analysis and a greedy selection algorithm
to iteratively create subsets of increasing size with the best-scoring individual
features were exploited. Both selection methods yielded better performance
than all features, with greedy selection achieving the best MAE scores with
254 features.

[11] reported positive results with a greedy backward selection algorithm
that removes 21 poor features from an initial set of 66 features based on error
minimisation on a development set.
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In an oracle-like experiment, [7] use a sequential forward selection method,
which starts from an empty set and adds one feature at a time as long as it de-
creases the model’s error, evaluating the performance of the feature subsets on
the test set directly. 37 features out of 147 are selected, and these significantly
improved the overall performance.

[1] tested a few feature selection methods using both greedy stepwise and
best first search to select among their 266 features with 10-fold cross-validation
on the training set. These resulted in sets of 30-80 features, all outperform-
ing the complete feature set. Correlation-based selection with best first search
strategy was reported to perform the best. Conversely, [13] reported no im-
provements in performance in experiments with several selection methods.

Finally, [22], the winning system in the WMT12 QE shared task, used
a computationally-intensive method on a development set. For each of the
official evaluation metrics (e.g. MAE), from an initial set of 24 features, all 224

possible combinations were tested, followed by an exhaustive search to find the
best combinations. The 15 features belonging to most of the top combinations
were selected. Other rounds were added to deal with POS features, but the
final feature sets included 14-15 features depending on the evaluation metric.
This technique outperformed the complete feature set by a large margin.

3 Gaussian Processes

Gaussian Processes (GPs; [18]) are an advanced machine learning framework
incorporating Bayesian non-parametrics and kernels, and are widely regarded
as state of the art for many regression tasks. Despite that, GPs have been
under-exploited for language applications. Most of the previous work on QE
uses kernel-based Support Vector Machines for regression (SVR), based on
experimental findings that non-linear models significantly outperform linear
models. This is perhaps unsuprising, given the relatively small numbers of
input features used and the complexity of the response variable.

There is little reason to expect that measures of quality, such as post-
editing effort, will be a linear function of the input features. To illustrate,
consider how quality varies with the length of the source sentence, one of the
most important features in our arsenal. Most short inputs are easy to trans-
late, and therefore we expect the translation quality to be high. In contrast
medium length sentences can be much more syntactically complex, leading to
much worse translations. However we do not expect that very long sentences
are much worse again: in fact they may be simpler, as these sentences are often
lists or other highly structured sentences which can be more easily translated.
Consequently, positing a linear relationship between input length and quality
is not a reasonable proposition. For this feature and many other important
features, a non-linear approach is more appropriate. Fig 1 shows three exam-
ples of features known to perform very well for translation quality prediction
(source sentence length in 1(a), source sentence language model score in 1(b),
and target sentence language model score in 1(c)) and their relationship with
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(a) Length (b) LM source (c) LM target

Fig. 1 Features known to perform well for translation quality prediction (source sentence
length in 1(a), source sentence language model score in 1(b), and target sentence language
model score in 1(c)) and their relationship with post-editing distance – HTER, with a fitted
GP to highlight the non linearity of the data.

(a) posterior samples (b) fitted posterior samples (c) full posterior

Fig. 2 The Bayesian posterior under a GP prior, illustrated on synthetic one-dimensional
data. Figs a and b show samples from the posterior (curves) over functions given several
training observations (blue dots). These differ in the values of the hyperparameters, Fig a
uses σ2

f = σ2
n = l = 1, while Fig b has learned the MLE hyper-parameters, σ2

f = 0.7, σ2
n =

0.02, l = 0.3. Fig c shows the full posterior for the model in b, with the shaded area denoting
± one confidence interval.

post-editing distance – HTER [21], with a fitted GP to highlight the non lin-
earity of the data. The same behaviour is observed with other features and
other quality labels.

Like SVMs for regression – SVRs, GPs can describe non-linear functions
using kernels such as the radial basis function (RBF). However in contrast,
inference in GP regression can be expressed analytically and the kernel hyper-
parameters optimised directly using gradient descent. This avoids the need
for costly cross validation, while also allowing the use of much richer kernel
functions with many more parameters. Further differences between the two
techniques are that GPs are probabilistic models and thus can be incorporated
into larger graphical models. Moreover, GPs take a fully Bayesian approach by
integrating out the model parameters to support posterior inference. Unlike
most other Bayesian methods, GP regression supports exact posterior inference
and learning (see Fig 2), without the need to resort to approximation (e.g.,
Markov Chain Monte Carlo sampling or variational approximations).
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(a) l = 0.3 (b) l = 1 (c) l = 4

Fig. 3 Samples from a Gaussian Process prior with different length scales in an RBF kernel,
showing the effect of this parameter on the smoothness of the function. We consider one
dimensional input (D = 1), set σf = 0.7 and omit the white-noise term.

Formulation We now present GP regression, following the formulation of Ras-
mussen and Williams [18, chapter 2]. GP regression assumes the presence of
a latent function, f : RF → R, which maps from the input space of feature
vectors x to a scalar. Each response value is then generated from the function
evaluated at the corresponding data point, yi = f(xi)+η, where η ∼ N (0, σ2

n)
is added white-noise. Formally f is drawn from a GP prior,

f(x) ∼ GP (0, k(x,x′)) ,

which is parameterised by a mean (here, 0) and a covariance kernel function
k(x,x′). The kernel function represents the covariance (i.e., similarities in the
response) between pairs of data points. Several draws of f from a GP prior
are illustrated in Fig 3.

Kernel (covariance) function GPs allow for many different kernels. Here we
consider the RBF with automatic relevance determination,

k(x,x′) = σ2
f exp

(
−1

2

D∑
i

(xi − x′i)
2

li

)
,

where the k(x,x′) is the kernel function between two data points x, x′; D is
the number of features; and σf and li ≥ 0 are the kernel hyper-parameters
which control the covariance magnitude and the length scales of variation in
each dimension, respectively. This is closely related to the RBF kernel used
with SVR, except that each feature is scaled independently from the others,
i.e., li = l for SVR, while GPs allow for a vector of independent values. The
model hyper-parameters (σn, σf , l) are learned from data using a maximum
likelihood estimation.

The learned length scale hyper-parameters can be interpreted as encod-
ing the importance of a feature: the narrower the RBF (the smaller is li) the
more important a change in the feature value is to the model prediction. This
is illustrated in Fig 3, which shows samples from a GP prior with different
settings of the length scale: clearly the value of the input will be of less impor-
tant for Fig 3(c), where the curves are mostly flat, versus Fig 3(a) which allows
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for rapid fluctuations. This effect can also be seen in the posterior, comparing
Figs 2(a) and 2(b), where the latter’s shorter length scale allows more accurate
fitting of the training points.

Feature selection A model trained using GPs can be viewed as a list of features
ranked by relevance, and this information can be used for feature selection by
discarding the lowest ranked (least useful) features. GPs on their own do not
provide a cut-off point on this ranked list of features, instead this needs to
be determined in another way, e.g., by evaluating loss on a separate set to
determine the optimal number of features. We experiment with variants on
how to determine this cut off point in Section 4.3.

Bayesian inference Given the generative process defined above, prediction can
be formulated as Bayesian inference under the posterior,

p(y∗|x∗,D) =

∫
f

p(y∗|x∗, f)p(f |D),

where x∗ is a test input and y∗ is its response value. The posterior p(f |D)
reflects our updated belief over possible functions after observing the training
set D, i.e., f should pass close to the response values for each training instance
(but need not fit exactly due to additive noise). This is balanced against the
biases (e.g., smoothness constraints) that arise from the GP prior. The poste-
rior is illustrated in Fig 2 (a, b), which shows several samples of f from the
posterior in (a,b), which are consistent with the observed training data, D.
The predictive posterior can be solved analytically, resulting in

y∗ ∼ N
(
kT
∗ (K + σ2

nI)−1y, k(x∗,x∗)− kT
∗ (K + σ2

nI)−1k∗
)
, (1)

where k∗ = [k(x∗,x1) k(x∗,x2) · · · k(x∗,xn)]T are the kernel evaluations be-
tween the test point and the training set, and {Kij = k(xi,xj)} is the ker-
nel (gram) matrix over the training points. Note that the posterior in Eq. 1
includes not only the expected response (the mean) but also the variance,
encoding the model’s uncertainty, which is important for integration into sub-
sequent processing, e.g., as part of a larger probabilistic model. The posterior
is illustrated in figure 2(c). Note the increasing amounts of uncertainty in the
centre of the graph (wider confidence interval) where there are few nearby
training instances compared to the edges where there is dense training data.
This nuanced modelling of uncertainty is of great importance when combining
the model into a larger probabilistic graphical model, such that uncertainty
can be preserved in task based inferences.

The remaining question is how to determine the kernel hyperparameters.
As stated above, these modulate the effect and strength of the GP prior, in-
cluding in our case the relative importance of each feature. The GP framework
allows for kernel hyper-parameters to be learned using a maximum likelihood
estimate (type II). The marginal likelihood, p(y|X) =

∫
f
p(y|X, f)p(f), can

be expressed analytically for GP regression (X are the training inputs), which
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can be optimised with respect to the hyper-parameters for model selection.
Specifically, we can derive the gradient of the (log) marginal likelihood with
respect to the model hyperparameters (i.e., σn, σf , l etc.) and thereby find the
type II maximum likelihood estimate using gradient ascent. Note that in gen-
eral the marginal likelihood is non-convex in the hyperparameter values, and
consequently the solutions may only be locally optimal. Here we bootstrap
the learning of complex models with many hyperparameters by initialising
with the (good) solutions found for simpler models, thereby avoiding poor lo-
cal optima. We refer the reader to [18, chapters 2, 4–5] for further details on
Gaussian process regression, kernel formulations and model selection in this
framework.

4 Experimental settings

In our experiments, model learning is performed with an open source imple-
mentation of GPs2 for regression. This is used for our proposed feature selec-
tion method. In what follows we describe two groups of quality estimation
datasets: the first group contains various datasets for which we have extracted
common feature sets using the QuEst framework [27,19] (Section 4.1); the
second group contains a single dataset with various feature sets provided as
part of the WMT12 quality estimation shared task (Section 4.2).

4.1 Datasets with QuEst features

The following datasets have a common feature set and are available for down-
load.3 The statistics of these datasets are shown in Table 1.

WMT12 English-Spanish news sentence translations produced by a phrase-
based (PB) Moses “baseline” SMT system,4 and judged for post-editing effort
in 1–5 (highest-lowest), taking a weighted average of three annotators [6].

EAMT11 English-Spanish (EAMT11-en-es) and French-English (EAMT11-
fr-en) news sentence translations produced by a PB-SMT Moses baseline sys-
tem and judged for post-editing effort in 1–4 (highest-lowest) [24].

EAMT09 English sentences from the European Parliament corpus translated
by four SMT systems (two Moses-like PB-SMT systems and two fully discrim-
inative training systems) into Spanish and scored for post-editing effort in 1–4
(highest-lowest). Systems are denoted by s1-s4 [28].

2 http://sheffieldml.github.io/GPy/
3 http://www.dcs.shef.ac.uk/~lucia/resources.html
4 http://www.statmt.org/moses/?n=Moses.Baseline
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Dataset Languages Training Test Label
WMT12 en-es 1,832 422 PE effort 1-5
EAMT11 en-es 900 64 PE effort 1-4
EAMT11 fr-en 2,300 225 PE effort 1-4
EAMT09-s1-s4 en-es 3,095 906 PE effort 1-4
GALE11-s1-s2 ar-en 2,198 387 Adequacy 1-4
LIG fr-en 9, 000 1, 881 HTER 0-1
TRACE en-fr 7, 599 1, 323 HTER 0-1
TRACE fr-en 7, 400 1, 295 HTER 0-1
WMT13 en-es 2, 254 500 HTER 0-1

Table 1 Number of sentences in our datasets. Figures for EAMT09-s1-s4 and GALE11-s1-
s2 indicate number of sentences per MT system.

GALE11 Arabic newswire sentences translated by two Moses-like PB-SMT
systems into English and scored for adequacy in 1–4 (worst-best). Systems are
denoted by s1-s2 [25].

TRACE English-French (en-fr) and French-English (fr-en) sentence transla-
tions produced by two MT systems: a rule-based system (Reverso) and LMSI’s
statistical MT system [29]. English-French contains a mixture of data from
Ted Talks, WMT news, SemEval-2 Cross-Lingual Word Sense Disambigua-
tion, and translation requests from Softissimo’s online translation portal (the
Reverso system), which can be thought of as user-generated content. The
French-English data contains sentences from the OWNI – a free French online
newspaper, Ted Talks and translation requests from Softissimo’s online trans-
lation portal. All translations have been post-edited and the HTER scores are
used as quality labels. For each language pair, 1, 000 translations have been
post-edited by two translators independently. We simply concatenated these
in our datasets.

LIG French-English sentence translations of various editions of WMT news
test sets, produced by a customised version of a PB-SMT Moses system by the
LIG group [16]. These sentences have been post-edited by a human translator,
and labelled for HTER.

WMT13 English-Spanish sentence translations of news texts produced by a
PB-SMT Moses baseline system. These were then post-edited by a professional
translator and labelled for post-editing effort using HTER. This is a superset
of the WMT12 dataset, with 500 additional sentences for test, and a different
quality label [4].

4.1.1 Feature sets

The features for these datasets are extracted using the open source toolkit
QuEst.5 We differentiate between black-box (BB) and glass-box (GB) features,

5 http://www.quest.dcs.shef.ac.uk
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as only BB are available for all datasets (we did not have access to all MT
systems that produced the other datasets). For the WMT12 and GALE11
datasets, we experimented with both BB and GB features. The BB feature
sets are the same for all datasets, except for the Arabic-English datasets,
where language-specific features supplement the initial set of features, and for
the WMT13 dataset, where advanced features dependent on external resources
like parsers have been exploited.

We also distinguish one special feature: the pseudo-reference (PR), as this is
not a standard feature in that its computation requires decoding with another
MT system. This feature consists in translating the source sentence using an-
other MT system (in our case, Google Translate) to obtain a pseudo-reference.
The geometric mean of smoothed 1-to-4-gram precision scores6 is then com-
puted between the original MT and this pseudo-reference. We note that the
better the external MT system, the closer the pseudo-reference translation is
to a human translation, and therefore the more reliable this feature becomes.

For each dataset we built four QE systems, each with a feature set:

– Baseline (BL): 17 BB features that performed well across languages in
previous work and were used as baseline in the WMT12-13 QE shared
tasks.
– number of tokens in the source & target sentences
– average source token length
– average number of occurrences of the target words within the target

sentence
– number of punctuation marks in source & target sentences
– n-gram language model (LM) probability of source & target sentences

using 3-gram LMs built from the source/target corpora
– average number of translations per source word given by IBM 1 model

thresholded such that P (t|s) > 0.2
– same as above threshold such that P (t|s) > 0.01, where the number of

translations for each source word is weighted by the inverse frequency
of the word in the source language corpus

– percentage of unigrams, bigrams and trigrams in frequency quartiles 1
(lower frequency words) and 4 (higher frequency words) in the source
language corpus

– percentage of unigrams in the source sentence seen in source language
corpus

– All features (AF) available for the dataset. This is a superset of the above,
where:
– Common set of 80 BB features for all datasets, and additional 43 lan-

guage specific features for the Arabic-English datasets, or additional
advanced features for the WMT13 dataset.

6 This formulation is equivalent to sentence level BLEU without a brevity penalty, where
the n-gram precision scores are smoothed: we add one to the numerator and denominator
terms in order to avoid division by 0 errors.
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– For the experiments with GB features we have all MT system-dependent
features (varying according to the actual type of MT system) available
for the GALE11-s1 (39), GALE11-s2 (48), and WMT12 (47) datasets.

For a comprehensive list, we refer the reader to the QuEst project website.6

– BL+PR: 17 baseline features along with a pseudo reference feature.
– AF+PR: All features available (BB, GB or BB+GB) plus the pseudo-

reference feature.

4.2 WMT12 datasets

We now turn to the second family of feature sets i.e., for the WMT12 dataset
described above. We use the feature sets provided by all but one of the partic-
ipating teams in the WMT12 shared task on QE.7 These very diverse feature
sets, with features of many different natures, although some overlap with the
QuEst features exists in most cases. We denote each of these feature set AF.
We note however that in a few cases these are only a subset of the features
actually used in the shared task, e.g. UU, since the participants could not
provide us with the full feature sets. This explains the difference between the
official scores reported in [6] and our figures. This difference can also be ex-
plained by the learning algorithms: while we used GPs, participants have used
SVRs, M5P and other algorithms. Some of these feature sets already result
from feature selection techniques.

SDL [22]: 15 features selected after an exhaustive search algorithm based on all
possible combinations of features. This is the optimal set used by the winning
submission. It includes many of the baseline features, the pseudo-reference
feature, phrase table probabilities, and a few part-of-speech tag alignment
features.

UU [9]: 82 features, a subset of those used in the shared-task as the parse tree
features (based on tree-kernels) were not provided by the participants. These
are similar to the common BL and BB features presented above and include
various source and target LM features, average number of translations per
source word, number of tokens matching certain patterns (hyphens, ellipsis,
etc.), percentage of n-grams seen in corpus, percentage of non-aligned words,
etc.

UEdin [5]: 56 black-box features including source translatability, named enti-
ties, LM back-off features, discriminative word-lexicon, edit distance between
source sentence and the SMT source training corpus, and word-level features
based on neural networks to select a subset of relevant words among all words
in the corpus.

7 These feature sets were made available by the task organisers at http://www.dcs.shef.
ac.uk/~lucia/resources.html
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Loria [11]: 49 features including 1-5gram LM and back-off LM features, inter-
lingual and cross-lingual mutual information features, IBM1 model average
translation probability, punctuation checks, and out-of-vocabulary rate.

TCD [13]: 43 features based on the similarity between the (source or target)
sentence and a reference set (the SMT training corpus or Google N-grams)
with n-grams of different lengths, including the TF-IDF metric.

WLV-SHEF [7]: 147 features which are a superset of the common 80 black-
box features above. The additional features include a number of linguistically
motivated features for source or target sentences (percentage) or their com-
parison (ratio), such as content words and function words, width and depth
of constituency and dependency trees, nouns, verbs and pronouns.

UPC [15]: 56 features on top of the baseline features. Most of these features
are based on different language models estimated on reference and automatic
Spanish translations.

4.3 Feature selection techniques

As previously described, our proposed technique for feature selection uses GPs.
In each dataset, features are first normalised. Each feature is centred and
scaled to have zero mean and unit standard deviation. For feature ranking,
the models are trained on the full training sets, except in the FS(GP-dev)
setting (below). The RBF widths, scale and noise variance are initialised by
training first with an isotropic kernel (with a single length scale, li = l), then
untieing the length scales and continuing training. This helps to avoid local
minima in the MLE. We apply a sparse approximation method for inference,
known as Fully Independent Training Conditional [17], which bases parameter
learning on a few inducing points in the training set instead of the entire
training set. This approximation technique is used to make the learning less
computationally expensive and therefore faster, which is important for large
training sets. The hyper-parameters are learned using gradient descent with a
maximum of 100 iterations. A forward selection approach is then used to select
features ranked from top to worst and train models using GPs with increasing
numbers of features and all available training data.

Four variant of selection techniques were used in our experiments, all ap-
plied on the entire set of features (AF+PR for the QuEst datasets, and AF
for the WMT12 datasets):
– FS(GP-dev): Feature selection on AF+PR for automatic ranking and

selection of top features with GPs on a development set and applied to test
set.

– FS(GP-fixed): Feature selection on AF+PR for automatic ranking and
selection of top features with GPs and a fixed number of features (threshold
pre-defined).
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– FS(GP-test): Feature selection on AF+PR for automatic ranking and
selection of top features with GPs directly on test set (oracle selection).

– FS(RL): Feature selection with Randomised Lasso [12].

In FS(GP-dev), a development set is randomly selected from the training
data for each of the dataset. In each of the datasets, we extracted the same
number of sentences for development as there were for the test set. The de-
velopment set was then used to choose the cutoff point in the ranked set of
features generated by the GP model, i.e., where to stop selecting features. Once
we performed feature selection over development set, the full training set was
used to train the final models.

FS(GP-fixed) is based on pre-defined threshold on number of features
to select for model training. The threshold was decided empirically based on
previous experiments on various datasets. We observed that the optimal num-
ber of features oscillates between 10 and 30 features for different datasets. In
these experiments, we selected 17 as fixed threshold for two reasons: it falls
within this range and it allows for an interesting comparison with the hand
engineered selection of 17 baseline features.

In FS(GP-test), the selected set is evaluated under an oracle condition,
where the optimal number of features is decided based on the best perfor-
mance obtained directly on the test set. This experiment aimed to study the
upper bound in performance of the GPs-based method for feature selection.
The subset of top ranked features that minimises error in each test set is
selected.

As an alternative approach to GPs, we use Randomized Lasso, FS(RL),
for feature selection. Randomised Lasso repeatedly resamples the training data
and fits a Lasso regression model on each sample. A feature is selected for the
final model if it is selected (i.e., assigned a non-zero weight) in at least 25% of
the samples (we do this 1000 times). This strategy improves the robustness of
Lasso in the presence of high dimensional and correlated inputs. It should be
noted that FS(RL) automatically selects the number of features to be used
for training. The final models are then trained using GPs with the selected
features.8

4.4 Evaluation metrics

To evaluate the prediction models we use Mean Absolute Error (MAE), its
squared version – Root Mean Squared Error (RMSE), plus the Relative Ab-
solute Error (RAE) and its squared version – Relative Squared Error (RSE).
MAE is used as the main metric on the charts for a comparative analysis. RAE
provides the average error relative to a simple predictor, which is just the av-
erage of the true values. We use it here to provide some form of comparison
across prediction models for different datasets.

8 The GP trained on the selected features consistently outperforms the linear model learned
by RL.
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MAE =

∑N
i=1 |H(si)− V (si)|

N
RMSE =

√∑N
i=1(H(si)− V (si))2

N

RAE =

n∑
i=1

|H(si)− V (si)|

n∑
i=1

|V̄ (s)− V (si)|
RSE =

√√√√√√√√√
n∑

i=1

(H(si)− V (si))
2

n∑
i=1

(V̄ (s)− V (si))
2

where:
N = |S| is the number of test instances,
H(si) is the predicted score for si,
V (si) is the true (human) score for si,
V̄ (s) is the mean true score (on the test set).

5 Results

We note that preliminary results for some of the datasets used here have been
reported in [20]. The following results include additional datasets and further
analysis.

5.1 Results on QuEst feature sets

The error scores for all datasets with common (QuEst) black-box (BB) features
are reported in Tables 2 and 3, while Table 4 shows the results with glass-box
(GB) features for a subset of these datasets, and Table 5 the results with BB
and GB features together for the latter datasets. For each Table and dataset,
bold-faced figures represent results that are significantly better (paired t-test
with p ≤ 0.05) with respect to the following comparisons, where available:

– BL vs AF;
– BL vs BL+PR;
– AF vs AF+PR; and
– Each feature selection techniques versus AF+PR.

Underlined figures represent best results overall and double underlined figures,
the second best results.

In what follows we take a closer look at some of these comparisons, as
well as the difference between different types of feature selection methods. We
summarise these comparisons graphically in Fig 4. This figure shows the im-
provements of different feature sets over the BL results. We also discuss the
impact of using GB features against BB features only, showing the improve-
ments of various feature sets over the use of black-box features in Fig 6.
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Dataset System #feats. MAE RMSE RAE RSE

EAMT11-en-es

Mean - 0.6027 0.7314 1.0172 1.126
BL 17 0.4857 0.6178 0.8780 1.2071
AF 80 0.4719 0.5418 0.8709 1.1808

BL+PR 18 0.4490 0.5329 0.8417 0.9917
AF+PR 81 0.4471 0.5301 0.8414 0.9905

FS(GP-dev) 13 0.4370 0.5199 0.8424 0.9911

FS(GP-fixed) 17 0.4397 0.5224 0.8411 0.9901

FS(GP-test) 20 0.4320 0.5260 0.8330 0.9861
FS(RL) 69 0.4457 0.5324 0.8501 0.9937

EAMT11-fr-en

Mean - 0.5411 0.6927 1.0813 1.314
BL 17 0.4401 0.6301 0.9829 1.089
AF 80 0.4292 0.6222 0.9708 1.001

BL+PR 18 0.4183 0.6213 0.9614 0.9972
AF+PR 81 0.4169 0.6181 0.9682 0.9913

FS(GP-dev) 15 0.4123 0.6021 0.9627 0.9937

FS(GP-fixed) 17 0.4166 0.6176 0.9614 0.9920

FS(GP-test) 10 0.4110 0.6099 0.9387 0.9891
FS(RL) 65 0.4165 0.6180 0.9553 0.9871

EAMT09-s1

Mean - 0.5382 0.7092 1.0392 1.0036
BL 17 0.5313 0.6655 0.8217 0.8111
AF 80 0.5265 0.6538 0.7949 0.7535

BL+PR 18 0.5123 0 .6492 0.7712 0.7423
AF+PR 81 0.5109 0.6441 0.7467 0.7374

FS(GP-dev) 16 0.5055 0.6409 0.7367 0.7166

FS(GP-fixed) 17 0.5045 0.6392 0.7350 0.7175

FS(GP-test) 13 0.5025 0.6391 0.7317 0.7117
FS(RL) 73 0.5195 0.6416 0.7401 0.7320

EAMT09-s2

Mean - 0.6854 0.7926 1.0060 1.0016
BL 17 0.4614 0.5816 0.8933 0.7384
AF 80 0.4741 0.5953 0.8997 0.790

BL+PR 18 0.4493 0.5692 0.8714 0.7211
AF+PR 81 0.4609 0.5821 0.8701 0.7188

FS(GP-dev) 17 0.4514 0.5735 0.8711 0.7120

FS(GP-fixed) 17 0.4514 0.5735 0.8711 0.7120

FS(GP-test) 12 0.4410 0.5625 0.8514 0.7013
FS(RL) 59 0.4601 0.5807 0.8677 0.7114

EAMT09-s3

Mean - 0.6753 0.7751 1.0013 1.0009
BL 17 0.5339 0.6619 0.8114 0.7628
AF 80 0.5437 0.6827 0.7949 0.7535

BL+PR 18 0.5113 0.6492 0.7717 0.7490
AF+PR 81 0.5309 0.6771 0.7701 0.7489

FS(GP-dev) 15 0.5140 0.6591 0.7527 0.7324
FS(GP-fixed) 17 0.5130 0.6572 0.7515 0.7312

FS(GP-test) 15 0.5060 0.6410 0.7471 0.7250
FS(RL) 67 0.5295 0.6727 0.7680 0.7450

EAMT09-s4

Mean - 0.49904 0.6112 0.9991 1.0000
BL 17 0.3591 0.4942 0.7319 0.9759
AF 80 0.3578 0.4960 0.7335 0.9712

BL+PR 18 0.3401 0.4811 0.7216 0.9584
AF+PR 81 0.3409 0.4816 0.7224 0.9591

FS(GP-dev) 18 0.3381 0.4814 0.7113 0.9381

FS(GP-fixed) 17 0.3383 0.4811 0.7101 0.9374

FS(GP-test) 19 0.3370 0.4799 0.7011 0.9312
FS(RL) 40 0.3404 0.4805 0.7221 0.9571

Table 2 Results for datasets with common BB features - part 1.
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Dataset System #feats. MAE RMSE RAE RSE

WMT12

Mean - 0.8278 0.9898 1.0247 1.0263
BL 17 0.6821 0.8117 0.8622 0.7152
AF 80 0.6717 0.8103 0.8476 0.6954

BL+PR 18 0.6290 0.7729 0.8139 0.6678
AF+PR 81 0.6324 0.7735 0.7745 0.6699

FS(GP-dev) 15 0.6231 0.7658 0.7719 0.6651
FS(GP-fixed) 17 0.6224 0.7645 0.7701 0.6644

FS(GP-test) 19 0.6131 0.7598 0.7613 0.6586
FS(RL) 71 0.6335 0.7724 0.7755 0.6709

WMT13

Mean - 0.1438 0.1792 1.0036 1.0009
BL 17 0.1411 0.1812 0.9723 1.086
AF 114 0.1389 0.1775 0.9211 0.9713

BL +PR 18 0.1409 0.1802 0.9711 1.063
AF+PR 115 0.1367 0.1759 0.9181 0.9693

FS(GP-dev) 19 0.1217 0.1411 0.8907 0.9577

FS(GP-fixed) 17 0.1242 0.1489 0.8911 0.9581
FS(GP-test) 19 0.1207 0.1481 0.8844 0.9531

FS(RL) 101 0.1317 0.1691 0.9201 0.9709

GALE11-s1

Mean - 0.5823 0.7214 0.8533 0.8125
BL 17 0.5462 0.6885 0.8186 0.7715
AF 123 0.5399 0.6805 0.8017 0.7619

BL+PR 18 0.5301 0.6814 0.7929 0.7595
AF+PR 81 0.5249 0.6766 0.7905 0.7520

FS(GP-dev) 21 0.5220 0.6751 0.7871 0.7581

FS(GP-fixed) 17 0.5231 0.6761 0.7856 0.7577

FS(GP-test) 27 0.5210 0.6701 0.7811 0.7434
FS(RL) 56 0.5258 0.6749 0.7914 0.7530

GALE11-s2

Mean - 0.5850 0.7527 0.8573 0.8313
BL 17 0.5540 0.7117 0.8287 0.7978
AF 123 0.5401 0.6911 0.8232 0.7931

BL+PR 18 0.5401 0.7014 0.8221 0.7901
AF+PR 81 0.5249 0.6806 0.8154 0.7892

FS(GP-dev) 22 0.5197 0.6769 0.8133 0.7853

FS(GP-fixed) 17 0.5219 0.6794 0.8123 0.7841

FS(GP-test) 31 0.5194 0.6779 0.8081 0.7815
FS(RL) 54 0.5239 0.6805 0.8134 0.7899

LIG

Mean - 0.1326 0.1727 .9938 1.0245
BL 17 0.1250 0.1638 0.9369 0.9223
AF 80 0.1227 0.1631 0.9344 0.9209

BL+PR 18 0.1159 0.1527 0.9312 0.9191
AF+PR 81 0.1161 0.1534 0.9313 0.9183

FS(GP-fixed) 17 0.1087 0.1504 0.9287 0.9135

FS(GP-dev) 13 0.1077 0.1493 0.9284 0.9145

FS(GP-test) 13 0.1054 0.1489 0.9227 0.9099
FS(RL) 69 0.1154 0.1519 0.9321 0.9178

TRACE-fr-en

Mean - 0.1868 0.2470 1.0079 1.0030
BL 17 0.1807 0.2429 0.9749 0.9695
AF 80 0.1776 0.2422 0.9678 0.9611

BL+PR 18 0.1729 0.2210 0.9611 0.9554
AF+PR 81 0.1687 0.2127 0.9601 0.9521

FS(GP-dev) 18 0.1564 0.2081 0.9571 0.9499

FS(GP-fixed) 17 0.1597 0.2101 0.9565 0.9487

FS(GP-test) 19 0.1554 0.2089 0.9515 0.9421
FS(RL) 72 0.1654 0.2109 0.9589 0.9501

TRACE-en-fr

Mean - 0.1891 0.2460 1.0004 1.0021
BL 17 0.1782 0.2389 0.9315 0.9354
AF 80 0.1657 0.2279 0.9261 0.9292

BL+PR 18 0.1729 0.2210 0.9292 0.9314
AF+PR 82 0.1637 0.2127 0.9211 0.9226

FS(GP-dev) 15 0.1615 0.2133 0.9209 0.9221
FS(GP-fixed) 17 0.1612 0.2127 0.9201 0.9211

FS(GP-test) 18 0.1611 0.2131 0.9178 0.9193
FS(RL) 71 0.1633 0.2241 0.9209 0.9220

Table 3 Results for datasets with common BB features - part 2.
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Dataset System #features MAE RMSE RAE RSE

WMT12
AF 47 0.7066 0.8445 0.9114 0.7467

FS(GP-dev) 19 0.6789 0.8318 0.8931 0.7210
FS(GP-fixed) 17 0.6775 0.8314 0.8914 0.7196

FS(GP-test) 21 0.6755 0.8298 0.8814 0.7119
FS(RL) 35 0.6921 0.8388 0.9057 0.7411

GALE11-s1
AF 39 0.5736 0.7402 0.8516 0.8131

FS(GP-dev) 18 0.5715 0.7385 0.8499 0.8080

FS(GP-fixed) 17 0.5732 0.7381 0.8491 0.8098

FS(GP-test) 19 0.5702 0.7361 0.8441 0.8060
FS(RL) 33 0.5781 0.7481 0.8501 0.8111

GALE11-s2

AF 48 0.5540 0.6979 0.8317 0.8060
FS(GP-dev) 21 0.5451 0.6998 0.8243 0.8005

FS(GP-fixed) 13 0.5491 0.6944 0.8261 0.8011

FS(GP-test) 13 0.5411 0.6934 0.8220 0.8001
FS(RL) 41 0.5512 0.6950 0.8301 0.8041

Table 4 Results with GB features.

Dataset System #features MAE RMSE RAE RSE

WMT12
AF 128 0.7185 0.8451 0.9137 0.7507

FS(GP-dev) 25 0.6121 0.7582 0.7692 0.6629

FS(GP-fixed) 17 0.6161 0.7591 0.7703 0.6639
FS(GP-test) 29 0.6101 0.7561 0.7679 0.6611

FS(RL) 99 0.6601 0.8098 0.7815 0.6779

GALE11-s1
AF 163 0.5455 0.6722 0.8226 0.7755

FS(GP-dev) 27 0.5162 0.6699 0.7801 0.7411

FS(GP-fixed) 17 0.5170 0.6701 0.7810 0.7421
FS(GP-test) 30 0.5150 0.6681 0.7785 0.7384

FS(RL) 132 0.5310 0.6731 0.7911 0.7501

GALE11-s2

AF 172 0.5239 0.6529 0.8177 0.7915
FS(GP-dev) 27 0.5120 0.6441 0.8094 0.7812

FS(GP-fixed) 17 0.5119 0.6451 0.8111 0.7823

FS(GP-test) 17 0.5109 0.6431 0.8063 0.7795
FS(RL) 132 0.5155 0.6499 0.8144 0.7887

Table 5 Results with common BB & GB features.

Baseline features vs all feature sets Adding more features (systems AF)
leads to better results in most cases as compared to the baseline systems BL,
except for some of the EAMT-09 datasets. However, these are small and in
some cases not significant improvements. Adding more features may bring
more relevant information, but at the same time it makes the representation
more sparse and the learning prone to overfitting. Larger improvements over
the baseline come from using either a pseudo-reference feature or performing
feature selection, as we discuss in what follows.

Impact of the pseudo-reference feature Adding a single feature, the
pseudo-reference (systems BL+PR) to our baseline improves results in all
datasets, often by a large margin. Similar improvements are observed by adding
this feature to the set with all available features (systems AF+PR).
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Fig. 5 Error on (a) WMT12 and (b) EAMT11-en-es datasets with all BB features ranked
by GPs.

Impact of feature selection Our experiments with feature selection using
both GPs and RL led to significant improvements over the entire set of features.
Feature selection with GPs has shown better performance over feature selection
with RL.

For a more comprehensive overview of the results of feature selection us-
ing GPs, we plot the MAE error scores (on the test sets) for different cut-
off points on the features in our forward selection method after features are
ranked by GPs. The plots for two of our datasets are given in Fig 5. The y
axis shows the MAE scores, while the x axis shows the number of features
selected. Generally, we observe an initially rapid error decrease as features are
added until approximately 20 features, where the minimum (optimal) error
scores are found, after which error increases to a plateau at approximately 45
features. This shows that while a tiny number of features is insufficient, adding
too many low-ranked features degrades performance. Similar curves were ob-
served for all datasets with slightly different ranges for optimal numbers of
features and best score. It is interesting to note that the best performance
on most datasets is observed using 10-20 top-ranked features. This explains
why FS(GP-fixed) performs as well as FS(GP-dev) or FS(GP-test), in
most cases. Given that FS(GP-dev) and FS(GP-fixed) perform equally
well in most cases, the choice between them could be guided by the size of the
dataset: if enough data is available to put a development set aside, this should
be preferable, while FS(GP-fixed) should be used as a cheaper alternative
approach if necessary.

Black-box versus glass-box features GB features on their own perform
worse than BB features (Fig 6), but in all three datasets the combination of GB
and BB followed by feature selection resulted in significantly lower error than
using only BB features with feature selection, showing that the two features
sets are complementary.
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Fig. 6 Improvements of various feature sets over black-box features (AF+PR).

5.2 Results on WMT12 datasets

In order to investigate whether our feature selection results hold for other
feature sets, we experimented with the feature sets provided by most teams
participating in the WMT12 QE shared task. These feature sets are very di-
verse in terms of the types of features, resources used, and their sizes. As
shown in Table 6, we observed similar results: feature selection with GPs has
the potential to outperform models with all initial feature sets. For these ex-
periments, the significance is checked between system AF trained with GPs

versus each feature selection techniques. Improvements were observed even on
feature sets which had already been produced as a result of some other feature
selection technique. Table 6 also shows the official results from the shared task
[6], which are often different from the results obtained with GPs even before
feature selection, simply because of differences in the learning algorithms used.
In some cases the results with GPs without feature selection (AF) are better
than the official results, notably for WLV-SHEF and DCU – which both use
large sets of linguistically-motivated features, showing the potential of GPs as
a learning algorithm for QE.

The error curves on the test sets for different numbers of top-ranked fea-
tures have a similar shape to those with the common feature sets. As an
example, Fig 7 shows the Uppsala University feature set, with the lowest error
score for the 15 top-ranked features.
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Team System #features Official WMT12 score Score with GP
MAE RMSE MAE RMSE

SDL
AF 15∗ 0.61 0.75 0.6030 0.7510

FS(GP-dev) 10 - - 0.6021 0.7479

FS(GP-test) 10 - - 0.6013 0.7474
FS(RL) 12 - - 0.6025 0.7513

UU
AF 82 0.64 0.79 0.6507 0.8012

FS(GP-dev) 13 0.6425 0.7939

FS(GP-fixed) 17 0.6459 0.7952
FS(GP-test) 10 0.6419 0.7931

FS(RL) 67 0.6489 0.7979

Loria
AF 49 0.68 0.82 0.6866 0.8340

FS(GP-dev) 12 - - 0.6824 0.8355

FS(GP-fixed) 17 - - 0.6829 0.8351
FS(GP-test) 10 - - 0.6824 0.8395

FS(RL) 41 - - 0.6861 0.8395

UEdin
AF 56 0.68 0.82 0.6949 0.8540

FS(GP-dev) 16 - - 0.6839 0 8352

FS(GP-fixed) 17 - - 0.6825 0 8373

FS(GP-test) 20 - - 0.6795 0.8323
FS(RL) 49 - - 0.6899 0.8478

TCD
AF 43 0.68 0.82 0.6906 0.8367

FS(GP-dev) 12 - - 0.6906 0.8370

FS(GP-fixed) 17 - - 0.6907 0.8372
FS(GP-test) 10 - - 0.6904 0.8370

FS(RL) 37 - - 0.6913 0.8372

WLV-SHEF
AF 147 0.69 0.85 0.6665 0.8219

FS(GP-dev) 15 - - 0.6611 0.8090

FS(GP-fixed) 17 - - 0.6633 0.8105
FS(GP-test) 15 - - 0.6592 0.8088

FS(RL) 127 - - 0.6658 0.8168

UPC
AF 57 0.84 1.01 0.8365 0.9601

FS(GP-dev) 13 - - 0.8092 0.9304

FS(GP-fixed) 17 - - 0.8115 0.9368
FS(GP-test) 15 - - 0.8092 0.9288

FS(RL) 46 - - 0.8302 0.9588

DCU
AF 308 0.75 0.97 0.6782 0.8394

FS(GP-dev) 15 - - 0.6157 0.7671

FS(GP-fixed) 17 - - 0.6211 0.7716
FS(GP-test) 15 - - 0.6137 0.7602

FS(RL) 215 - - 0.6673 0.8250

PRHLT
AF 497 0.70 0.85 0.6733 0.8297

FS(GP-dev) 24 - - 0.6677 0.8201

FS(GP-fixed) 17 - - 0.6697 0.8219
FS(GP-test) 30 - - 0.6647 0.8179

FS(RL) 337 - - 0.6722 0.8291

Table 6 Results on WMT12 feature sets. * indicates that the initial feature sets already
resulted from feature selection.

5.3 Commonly selected features

Next we investigate whether it is possible to identify a common subset of
features which are selected for the optimal feature sets in most datasets. To
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Fig. 7 Error on 82 UU dataset with all features ranked by GPs.

Top-ranked feature Avg. rank
source sentence perplexity 9.12
number of mismatched quotation marks 11.28
source sentence perplexity without end of sentence marker 12.57
number of tokens in target 15.59
number of tokens in source 15.61
average number of translations per source word in the sentence
(GIZA++ lexical table thresholded: prob. > 0.1)

16.42

LM log probability of POS of the target 18.33
average number of translations per source word in the sentence
(GIZA++ lexical table thresholded: prob. > 0.2) weighted by the
inverse frequency of each word in the source corpus

19.12

pseudo-reference 19.99
absolute difference between no tokens in source and target normalised
by source length

20.45

Bottom-ranked features Avg. rank
absolute difference between number of commas in source and target 73.10
percentage of distinct unigrams seen in the corpus (in all quartiles) 69.13
average unigram frequency in quartile 3 of frequency (lower frequency
words) in the corpus of the source sentence

65.14

absolute difference between number of : in source and target nor-
malised by target length

64.19

absolute difference between number of : in source and target 62.12
percentage of tokens in the target which do not contain only a-z 61.16
number source tokens that do not contain only a-z 61.01
average number of translations per source word in the sentence
(threshold in giza: prob > 0.5)

59.66

percentage of punctuation marks in target 59.11
percentage of content words in the target 58.83

Table 7 Top and bottom ranked features based on their average GP rank across datasets.

do that, we took the average rank of each feature across all datasets containing
common feature sets. The 10 top and bottom ranked features, along with their
average rankings, are shown in Table 7.

Interestingly, not all top ranked features are among the 17 reportedly good
baseline features. All of these features are language-independent. Also, most
of them are simple and straightforward to extract: they either do not rely
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on external resources, or else use resources that are easily available, such as
language models (e.g., SRILM), or word-alignment models (e.g., GIZA++).

The same analysis on the feature sets from the WMT12 shared task is not
possible, given the very little overlap in the competitors’ feature sets.

6 Conclusions and future work

We have presented a number of experiments showing the potential of a promis-
ing feature ranking technique based on Gaussian Processes for translation qual-
ity estimation. Using an oracle approach to select the number of top-ranked
features to train quality estimation models, this technique has been shown to
outperform all feature sets available with only a small fraction of their features
on a number of datasets with common feature sets. More important, we were
able to obtain the same or comparable performance with this technique when
selecting the number of features based on a development set, or even based
on an empirically pre-defined threshold (17). The proposed feature selection
technique has also been shown to improve the performance of all participat-
ing systems in the WMT12 shared task on quality estimation. Finally, our
analysis led to the identification of a set of features which perform well on av-
erage across many datasets with different language pairs, machine translation
systems, text domains and quality labels.
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